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Signature of on-off intermittency in measured signals
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On-off intermittency is a phase-space mechanism that allows dynamical systems to undergo bursting. As its
name suggests, bursting is a phenomenon in which episodes of high activity are alternated with periods of
inactivity. Here we attempt to see whether we can tell from the output of a signal when an observed bursting
behavior is caused by the presence of on-off intermittency, using the example of a forced logistic map. The
results of our study indicate that on-off intermittency can be readily distinguished from other mechanisms for
bursting we know of, except for one. Many statistical properties of finite-length signals generated by on-off
intermittency can in fact be mimicked by the output of a nonlinearly filtered, linear autoregressive random
process.
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[. INTRODUCTION these are variants of the on-off mechanism and some appear
to be distinct. To avoid confusion, we shall adopt here the
In 1949, Batchelor and Townsend used the wiotdrmit- ~ somewhat imprecise terfourstingto describe the observed
tencyto describe their observations of the patchiness of théehavior that the various models are trying to capture, and
fluctuating velocity field in a fully turbulent fluid1]. The  retain the term on-off intermittency for the particular mecha-
kind of intermittent behavior isolated in their observationsnism that we study here. S _
occurs whenever systems alternate continually between A first question that we consider in this paper is how to
bursts of activity and quiescent states. Many natural systenfé€termine in which regions of parameter space on-off inter-
display such behavior. Solar activity is an example of currenfhitteéncy may occur. As we see below for the model studied
interest[2,3] because its cyclic production of sunspots suf-here, on-off dynamics is confined to a narrow region in pa-
fers sporadic interruptions that may be associated with colé@meter space, at the border between ordered behavior and
weather on earth. In the laboratory, Maurer and Libchabefull-blown noise-driven chaos so that passage through on-off
[4] have produced records of temperature variation at a poirifitermittency is one route to chaos.
in a thermally convecting fluid that clearly exhibits the phe- A further question that we address is how to tell whether
nomenon. These two examples must serve to represent tiRediven bursting behavior is well modeled by the specific
many known occurrences of vacillation between high excitalProcess of on-off intermittency, as opposed to other possible
tion and dormancy that are too numerous to list here. mechanismgsuch as the Pomeau-Manneville mechanism
In the past twenty years, the term intermittency has comé" this work.we thus analyze_ some of the observa_ble statis-
to be used to refer to a wider class of alternations in behavical properties of the on-off intermittency mechanism, con-
ior, as between temporal almost periodicity to continuouginuing along the lines of Heagst al.[15]. The goal of this
chaos. With the proliferation of models to explain such varia-€ffort is to obtain a sufficiently refined characterization of
tions, workers in dynamical systems theory have realize@n-off intermittency that will permit us to detect(ior rule it
that there are many different kinds of phase-space mech&ut in time-series data. As we have shown elsewhefd,
nisms that produce intermittency, especially of purely tem_e}nd we _dlscuss fu_rther here, 'ghls is often a difficult tasl_< in
poral behavior. For example, an early and readily visualizedime-series analysis. We sha_ll |Ilusf[rate the procedure with a
mechanism of such alternation is the Pomeau-Mannevill§imple model whose output is easily calculated.
scenario for the behavior of a system in the proximity of a
saddle-node bifurcatiof®]. A different mechanism, which is Il. THE DRIVEN LOGISTIC MAP
the subject of the present paper, is the one cadleaff in-
termittency see Ref[6] for an introduction to this type of
dynamics and Ref{7] for an early discussion of bursting
dynamical systems. More recently, several discussions
bursting mechanisms have been publishg@d14]; some of X 1= AY)X[1—X,]. (1)

In the interests of ease of computation and clarity of ex-
position we concentrate here on the simple example of the
quiven logistic map,

The quantityA(Y,) is to be specified but we assume that O
*Also at ISI Foundation, Viale S. Severo 65, 1-10133 Torino, Italy. <A<4 and that it is anonotonicfunction of Y,. This sys-
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tem has the invariant manifol¥=0 and we shall measure 4 . . . . . . .
the level of activity of the system bjyx,|.

In the simple case where the dynamics Ygf does not L 4
depend onX;, we have a skew-product structure and it is
then relatively easy to anticipate what kind of qualitative
behavior the model will produce. If we freeXg the stability
of X=0 is decided by the instantaneous valuefofin the
state of frozenY,, the map may have a second fixed point
away from X=0. When A drops below unity, this point
ceases to exist and the system heads back toward, 3
there to hover quiescently withX;| close to O untilA rises
above unity once again. Though the detailed behavior to be
expected when there is no skew-product structure is harder ti
anticipate, numerical studies show that on-off intermittency
occurs robustly. In either case, to produce marked bursting
we need the invariant manifold to be sufficiently attracting
during sufficiently long stable phases. As we see below, this
happens in only a small portion of the available parameter
space that represents a transition from order to chaos.

To see the on-off mechanism in action, we specialize to
the explicit case of a noise-driven logistic map, with

A(Y)=Ay+aY,, 2) FIG. 1. Parameter plane for the stochastically forced syst&jmns
and(2) discussed in the text. Allowed values of the paramefgrs

whereY, is é-correlated noise that is uniformly-distributed and a must satisfyA,+a=<4 (this limit is indicated by the solid
in the interval[0,1] andA, and « are parameters. To ensure Curve at—45°). The dark gray area indicates the parameter range
that 0<A(Y,)=<4, we restrict ourselves to the casg=0, for which the fixed pointX=0 is s_table. The pale gray area indi-
a=0, andAy+a<4. Figure 1 shows the parameter p|anecates t_he parameter range for which the pirtl—1/A wou_ld pe
for the noise-driven systend) and(2). The dark gray area attracting if A were constant. The curve on the lower Igft |nd|_cates
indicates the parameter range for which the fixed point the minimum parameter \.’alues‘ Eg), for which on-off intermit-
—0 is stable. The pale gray area indicates the paramettency is present; below this curve the system tends to the fixed point

range for which the poink=1—1/A would be attracting if -0
A were constant. Qutside the two gray regions in parametgqre the angular brackets indicate time average over the
space, the system undergoes different types of noisy ChaOtlﬁterval[Ot] Then
dynamics. Y

The intermittent dynamics of systertly and(2) has been Xis1=Xoexd (t+1){ InA)]. (5)
described in Ref46,15,17. Bursting is observed in the tem-
poral evolution ofX; as the stability of the fixed poink  In the case(InA)>0, the fixed pointX=0 becomes un-
=0 varies. Figure @) shows a time series ok, for the  stable. Forx In A)<0, the fixed point is stable and the burst-
parameter value&,=0 anda=2.75. Heagyet al.[15] have  ing behavior, even if present, is just a transient. With @3,
shown that forA;=0 there is a critical value,.>1, below  we then find that the value af. for which
which the system asymptotically tends to the fixed paint
=0, without any sustained intermittent bursting. Such a
grltlcal value exists also for 9Ae<1, Ie_admg_ to a 9r|t|cal_ is the approximate marginal stability curve for the onset of
line a.(Ay)>1—A, that separates a region with no intermit- on-off intermittency.
tency fora<a, from a region where on-off intermittency is 14 value of( In Ay=(In(Ay+aYy) depends on the prob-
possible, fora> ar. ability distribution ofY, , which we denote ag(Y). For the

To derive the C”.t'cal Ime(f_ollo_vvmg Hea_lgy etal), we uniformly distributed random noise considered above Y0
recall that the bursting behavior is determined by the linear

< =
instability of the systemgl) and (2). For prescribedA(Y,), 1. p(¥)=1, whence

the linear equation in proximity of the fixed poiKt=0 can 1
be written as (In(Ag+aYy)= fo dYp(Y)In(Ag+ aY) @)

Xer 1= A(Y) X+ O(X?P), (3)

(In(Ag+acYy))=0 (6)

and so
and thus we can write 1
(In A}Z;[(AO—F a)in(Ag+a)—AginAg—a)].  (8)
t+1

Xo

t
In ~ZO INA(Y,)=(t+1)(InA), (4)

Thus, the critical conditiory, In A)=0, is given by
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FIG. 2. Sample time series of the driven variaMein the stochastically forced systeriy) and (2) for the parameter value®) A,
=0, a=2.75; (b) Ay=0.5, «=2.75.

(Ap+ ag)In(Ag+ ac) —Agln Ag— a.=0. (9) points. The intermittent system always resulted in a power-
law distribution of the signal amplitude.
This implicitly definesa= a.(A,), shown as a curve in Fig. Close to the critical curve above which on-off intermit-

1. However,a> a, is only a necessary condition for on-off t€ncy appears, the signal amplitude has a distributiix)
intermittency. As we show below, on-off intermittency exists * X~ for X less than about 0.1. For larger valuesXofthe
only in a limited region of parameter space just above thiglistribution deviates from a power law. The behavior of the
curve. For example, Fig.(B) shows a time series of, for ~ amplitude distribution at smaX can be understood by con-
the parameter values,= 0.5 ande=2.75, above the critical Sidering the linearized dynamics of systefas and (2), al-
line. This time series does not display on-off intermittency,e@dy discussed for the derivation of the critical curve for
as we shall see, and the system undergoes noisy chaotic d§0-Off intermittency. For small values & andA,=0, we
namics. In the following, we use the two signals shown incan write

Fig. 2 to contrast intermittent dynamics with noisy chaotic,

nonintermittent behavior. This will al!ow for bettgr charac- X1~ aYXe=aXol ] Ys. (10
terizing the properties of this mechanism for bursting and for s

determining the region of parameter space where on-off in- hus. f h lationshi
termittency can be found. Thus, from the relationship

Ill. A POWER-LAW TALE ‘T’(X)dX“P( E[ Ys>d1;[ Ys (12)

100

In this section we consider the two examples of the sys-
tems (1) and (2) corresponding, respectively, to behaviors
that are intermittent, as shown in Figia® or noisy chaotic,
as in Fig. Zb). Our goal is to isolate the properties of on-off
intermittency and to learn to detect on-off intermittency in
measured time series by using the simple example of thé& [
noise-driven logistic map. As we show in the following, on-
off intermittency is closely associated with power-law statis-
tics.

0.01 |

Probabilty Dei

0.001

A. Signal amplitudes

0.0001 |

Figure 3a) shows the amplitude probability density func-
tion, w (X), for the intermittent and nonintermittent cases
discussed above, corresponding, respectively, to the param- X
eter values £,=0,4=2.75) and f,=0.5a4=2.75). The FIG. 3. Amplitude distribution for the on-off intermittent dy-
distributions have each been computed from an ensemble @hmics corresponding t6,=0, a=2.75 (solid line) and for the
100 realizations of the process. For every realization we usefonintermittent dynamics corresponding #,=0.5, a=2.75
a different seed for the random number generétobtain a  (dashed ling The distributions have been obtained by an average
different sequence of random numbers in the stochasti6ver 100 realizations of the process. Each realization has a length of
driven, and we produced a time series of’2131072 217 points.

16-05
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and Eq. (10) we obtain that w(X)xP(IlYy), where f
P(I15Y) is the distribution ofllY. Then we may introduce }
a new probability density? and write ok
P(H YS)dH Ysocﬁ(Z InYS)dE InYs. (120,
s s s s SE 001 F
z
Hence g
o001 |
din]] Ys
m‘(X)OCﬁ(E |nYS)—SOCT§(E InYS>X1, 0.000 |
S dH YS S
S
(13) 1 10 duration 100 1000
where the factoP(Z4n Yy introduces only lognormal cor- FIG. 4. Distribution of the duratioil , of the off phases for the

rections. This simple, but general, argument rationalizes odftermittent case, corresponding téd=0,a=2.75) (solid line),
numerical findings. and for the nonintermittent case, correspondingAlp=0.5, «

Owing to the power-law distribution, for on-off intermit- =2.75(dashed line on Eh;’z leftThe upper dot-dashed line indicates
. . a power-law behaviol , . The distributions have been obtained
tent signals the kurtosis

from realizations of length 10" points.

<(Xt_<x>)4> . . .
XT o o s (14 bution of the durationT, of the phases for whicHX;

((Xe=(X))?) —(X)|<0.001, for the nonintermittent case corresponding to
Ap=0.5 anda=2.75. This distribution drops off much more
rapidly thanT, %2,
The properties of the distribution of the off phases do not
pend on the global properties of the specific system con-
sidered, but are generated by the dynamics in proximity to
the invariant manifold. For the systeni® and(2), the dy-
B. On and off phases namics can be linearized near the fixed point to obtain

A measure of intermittency that is used in the study of
. ) ; o : = + + -
turbulence is the fraction of time the system is in the active logX;+1=In(Ag+ a¥y) +In[X, (1= Xy)]
state, or intermittency factor. The term duty cycle also ap- ~ In(Ag+ aY;) +InX;. (15
pears in such contexts. However, in their study of on-off

intermittency in the systemél) and (2), Heagyet al. pre-  Thys the dynamics of the system close to the invariant mani-

ferred to measure the time spent in the quiescent, or offiy|q is |ocally a random walk in logarithmic coordinates, and

state. They found that the probability of having an off, O this dynamics is captured by the distribution of the off

- : e : -3/2 . N ,
laminar, phase lasting a tinik, is proportional toT ,*. I phases. For this reason, a power-law distribution of quiescent
measuring the durations of on and off phases, we need tBhasesP(T(b)och’z, is not a sufficient condition to declare

specify an amplitude of activityXc, above which the sys- ihe occurence of on-off intermittency. This point is explored
tem is considered to be on. For the choXe=0.001, Fig. 4  fyrther in Sec. VII.

shows the distribution of off, or laminar, phases for the in-
termittent case, as obtained from a time series with length
T=2x10". Bursting behavior is associated with a power-
law distribution of durations of the off phases, for a large  Another interesting issue concerns the shape of the power
range of thresholds. By contrast, the stochastically drivenspectrum. Simple nonintermittent, chaotic systems, such as
nonintermittent chaotic dynamics produces completely difthe logistic map with consta, generate signals with power
ferent signals. Clearly, there are no discernible off phases faspectra that are either white or bl{&8] (that is, dominated

the nonintermittent chaotic state, as the system never remaiy the high-frequency componeptsBy contrast, signals
long in or near to the invariant manifold in which it is con- generated by on-off intermittency have red spectra with low
sidered to be in the off state. One could, however, define th&requencies predominatifd7]. In that way, on-off intermit-
state of being off as characterized |p§— (X)| <C, whereC tent systems act as nonlinear integrators that take white driv-
is a suitably defined constant a() is the time average of ing signals and transform them into red signals characterized
X;, or similarly by |X;—(1—A"1)|<C for A>1. In both by low-frequency variability and spectral energy growing
cases, no scaling emerges and the durations of the off phase&h the wavelength. Additionally, the power spectra of on-
defined in this way have a distribution that falls off rapidly. off intermittent time series often display approximate power-
An example is provided in Fig. 4, where we show the distri-law behavior with spectral energy densRyw) proportional

of the amplitude distribution is significantly larger than the
Gaussian valué&,= 3. For nonintermittent, randomly driven

chaotic states, on the other hand, we find values of the kurde
tosis that are close to 3.

C. Power spectra
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" y y - - y operating, as there are other mechanigmsluding on-off
intermittency that produce such statistics.

D. Multifractal properties

In the analysis of signals, it is useful to introduce the

01 | . .
generalized structure functions

Power Spectra

001 Sq( T)E(<|Xt+7_ Xt|q>)l/q, (16)
where the symbo(- - -) again indicates average over time,

0001 | and 7 is an integer delay time. When

Sq( 7)o 7 (17

00001 . . . . . . - . .
1e-05 0.0001 0.001 0.0 o1 1 10 for small 7, the signal is said to have scaling arg is called

angular frequency .
a scaling exponerj20].

FIG. 5. Power spectra for the on-off intermittent dynamics cor- The standard structure function of a signaBjs Monof-
responding tA,=0, a=2.75(solid ling) and for the nonintermit-  ractal, or self-affine, signals are characterized by the equality
tent dynamics corresponding #=0.5, «=2.75 (dashed line  H,=H, for all . Brownian motion and white noise are ex-
The power spectra have each been obtained by averaging over 1@%ples of monofractal signals, haviity=0.5 andH,=0,
realizations of the process, each having a length'6fdints. respectively. Multifractal, or multiaffine, signals are charac-

terized byanomalous scalingn which H,>H,, for some
to a power of the inverse of the angular frequensy  positive numbergi<p [21]. Multifractal signals are gener-
P(w)>*1/w” with y usually smaller than 1. In Fig. 5 we ated by nonlineafdeterministic or stochasfiprocesses, and
contrast the power spectra for the systeftisand (2) in a  their Fourier transforms have correlated phd&.
situation of on-off intermittency with that in a state of non-  Figure &a) shows the set of generalized structure func-
intermittent, noisy chaotic dynamics. The spectra have beetions for the on-off time series shown in Figa@2 An ap-
computed for the same parameter values already considergtdoximate power-law behavior appears for the different mo-
above, and averaged over 100 realizations, each of which iments, allowing for the determination of the generalized
composed of ¥ points. The two spectra are completely dif- scaling exponentsi,. Figure &b) shows the generalized
ferent, with the spectrum for nonintermittent dynamicsscaling exponentsi, versusq, as obtained by averaging
showing a white noise behavior. over 100 realizations of the procesds and (2), by using

Though power-law spectra and power-law amplitude dis-different random seeds for the stochastic driver. The logarith-
tributions have often been taken as indicators of selfmic slopes of the structure functions have been computed in
organized criticality(SOC, Ref.[19]), as we see from this the range $7=<90. The upper and lower curves indicate,
example, power-law statistics are also associated with on-offespectively, the maximum and minimum values of the scal-
intermittency. Hence, the detection of power laws from meaing exponent on the ensemble of realizations. The scaling
sured signals does not warrant the conclusion that SOC iexponents decrease monotonically with the ordesf the
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FIG. 6. (a) Generalized structure functions for moments of omgler0.5,1,1.5. . . ,8 for theon-off intermittent system corresponding to
Ay,=0, a=2.75, in ascending ordefb) Average scaling exponents, as computed by a power-law fit to structure functions in the range 9
< 7=<90. These scaling exponents are computed as an average over an ensemble of 100 realizations. The upper and lower curves indicate
respectively, the maximum and minimum values of the scaling exponent for each moment order, as obtained from the ensemble of 100
realizations.
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4.0

creases for increasing values &§ and/ora. For givenA,,
a5 the range of values o& for which on-off intermittency is
' present is quite limited.

3.0

2.5 V. VARIATIONS ON THE THEME

A. Deterministic drivers

Having seen how a deterministic system parametrically
driven by a stochastic process produces on-off intermittency,
we may ask what happens when the driving process is deter-
ministic. The deterministic case has already been considered
in earlier studie§6,15-17 and we here recall the case of
two coupled logistic maps with skew-product structure,

00 05 10 1.5 20 25 30 35 40 namely,
A
° Xe+1=AY) X (1=Xy), (18
FIG. 7. The distribution of values of the kurtosis in the param-
eter plane. In the light portion, the values are significantly greater _ _
than 3, indicating the parameter values in which we may expect to Yir1=BY(1=Yy), (19
find on-off intermittency.
A(Yy)=Ag+ aYy, (20

moment. Analogous results are found for other parameter

values that lead to on-off intermittency. Thus, Fig. 6 indi- .

cates that signals generated by on-off intermittency display’n€reB is constant. o _
anomalous scaling. By contrast, nonintermittent chaotic dy- " EAS. (18)—(20), the probability distribution function

namics does not lead to structure functions with scaling?(Y) Of the chaotic driving signa¥, entering the integral in
propertieq 23]. g. (7) is different from that of the noise-driven system con-

sidered previously. The lower threshold for on-off intermit-
tency is correspondingly different. The lower limit to on-off
intermittency for the chaotic driving reaches the value

To form a comprehensive picture of the complex of char-=4 for A;=0. Thus, in order to generate intermittency with
acteristics of a signal generated by on-off intermittency, wethis form of chaotic driving we need to havg# 0.
construct a regime diagram for the driven logistic map show- Figure 8 shows a sample time serjganel(a)], together
ing the region of parameter space where on-off intermittencyvith the amplitude distributiofipanel(b)], the power spec-
occurs in that model. To produce the diagram, we have comtrum [panel(c)] and the distribution of the off phasgsanel
puted several global statistics for the part of parameter pland) for A;=0.01, =3.99, andB=4. For these parameter
where intermittency is theoretically possible. In particular,values, the system behaves very similarly to what happens
we have considered the following statistics: with a stochastic driver, indicating that on-off intermittency

(1) The logarithmic slope of the power spectrum. This isdoes not require the presence of stochastic forcing. As dis-
negative for on-off intermittency, while it is null or positive cussed by von Hardenbeeg al.[16], distinguishing between
for noisy chaotic, nonintermittent dynamics. deterministic and stochastic drivers in the analysis of a time

(2) The kurtosis of the time series. This is definitely largerseries requires either access to the extremely small scales
than 3 for intermittent systems and it4s3 for nonintermit- ~ achieved during the off periods or the explicit recognition of
tent dynamics. the phase-space structures present at large amplitudes, which

(3) The logarithmic slope of the distribution of off phases. are induced by the deterministic driver.

All these statistical estimators provide consistent answers The above result was found f@&=4. For smaller values
about where the on-off intermittency is found so, in the in-of B, the situation changes slightly. Wh&<4, the driving
terests of brevity, we discuss only the results of the kurtosigariableY; is confined to a subset of the interval (0,1) that
analysis. becomes smaller as the valueBtlecreases. Figure 9 shows

Figure 7 shows the values of the kurtosis in the parametethe probability distribution of the drively,, for the values
plane @y, «). The kurtosis is significantly larger than 3 only B=3.9 andB=23.75. Shrinking in the width of the distribu-
in a thin slice just above the theoretical cur@ discussed tion p(Y) is evident. For values d@ smaller than the thresh-
by Heagyet al. The lower edge of the region of on-off in- old for chaos in the logistic maB.~ 1.4, the variabley, is
termittency coincides with this curve, while the upper edge igeriodic or tends to a fixed point.
fuzzier and a well-defined border cannot be identified here. On account of the different distribution of the driver,
Intermittency is strongest immediately above the critical linep(Y), for B,.<B<4 the critical curve for the appearance of
and it merges smoothly with the nonintermittent noisy chaoon-off intermittency moves to lower values af Figure 10
found for larger values of the parameters. Consistently, thehows the critical curve for the casBs=4, B=3.9, andB
value of the kurtosis is largest at the critical line and it de-=3.75. As expected, on-off intermittency is present only in a

IV. A REGIME DIAGRAM
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FIG. 8. Results for a chaotically forced logistic map, E48)—(20), for the parameter valués,=0.01, «=3.99, andB=4. (a) Sample
time series of the driven variab} , (b) amplitude distribution(c) power spectrum, an@) distribution of the duratiofT ;, of the off phases.
The amplitude distribution and the power spectrum have been obtained by an average over 100 realizations of the process. Every realization
has a duration of ¥ points. The distribution of the off phases has been obtained from one realization with duratidi points. The
dashed line in pandl) indicates a power-law behavidr, *?.
thin region of the parameter plane just above the criticahot so hard to see either one in terms of the other. When one
curve. makes a surface of section it is really a stroboscopic map in

which the variation of one coordinate is used as the clock. It
B. The effect of feedback may not be a good clock by some lights, but it makes for

In the study of dynamical systems, there is often a distincgood maps. Similarly, on-off intermittency may be either
tion made between driven and autonomous systems. Yet it @riven or autonomous, the difference being that in the former
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FIG. 9. Probability distribution of the chaotic driv&%, Eq. (19) in the text, for the valueB=3.9 [panel(a)] andB=3.75[panel(b)].
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A simple example of autonomous on-off intermittency,
that has been given befof6,7], is the model system

Xiz1=(Agt+ aY) X (1—Xp), (21)

Yir1=(Bot+ BX)Y(1-Yy), (22)

where 8 measures the intensity of the feedback. In Fig. 11
we show a time series, together with the amplitude distribu-
tion, power spectrum and distribution of the off phases for
Ag=0, «=2.05,B,=3.9, andB=0.1. With this weak feed-
back, the system displays on-off intermittency. With a larger
feedback(i.e., for a larger value of the rati8/B;), the sys-
tem ceases to be intermittent and apparently undergoes non-
intermittent chaotic dynamics. Here again, we see that
on-off intermittency is a robust feature that does not depend
on the details of the driving mechanisms dbilit is a type

of behavior that is observed only in a limited parameter

case we have the so-called skew-product structure that, as wange located between regular behavior and full-blown cha-
have suggested, is useful for constructing models. Howeveqtic dynamics.

the earliest models of the process did not have this feature, Finally, we note that the mechanisms for bursting which
which, in fact, is not essential for the functioning of the are substantially similar to on-off intermittency, such as

mechanisni7].
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“bubbling” [11], lead to completely analogous results.
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FIG. 11. Results for a chaotically forced logistic map with feedback, E¢fB. and (22), for the parameter value&,=0, a=2.05,
B,=3.9, andB=0.1. (a) Sample time series of the driven varial{g, (b) amplitude distribution(c) power spectrum, ang) distribution

of the durationT , of the off phases. Same details as in Fig. 8.
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FIG. 12. Results for a system undergoing Pomeau-Manneville intermittency28gqfor the parameter values= —42.39,b=84.27,
c=—54.3, andd=12.43.(a) Sample time series of the state variakle (b) amplitude distribution(c) power spectrum, angl) distribution
of the durationT , of the off phases. Same details as in Fig. 8.

VI. OTHER FORMS OF INTERMITTENCY As an example of Pomeau-Manneville intermittency, we

Bursting signals can be generated by a diversity Ofcon5|der the map given by

mechanisms. _In the previous se_ctions,_ we have i_dentifigd le:f(xt):afor bx§+ ch+dXt, (23
some of the signatures of on-off intermittency and its vari-
ants, in order to be able to detect them in the analysis Ofjefined in 6=X,<1. In the following illustration, we usa
measured time series. Here, we consider some of the other — 42 39 h=84.27,c=—54.3, andd=12.43. The values
standard processes that produce bursting, and we show thgt the parameters are chosen so as to have a point of near
they can be easily distinguished from on-off intermittency ontangency—we are tempted to call it a point of pretangency. If
the basis of the statistical properties of the signals that theghis point is atX;,,=0.5528 its image ig (X;,,) =0.5529,
generate. while the difference between the point and its image is
A process that generates bursting signals is the Pomealf(X,n) — Xian|=10"*. For this model, if we may measure
Manneville mechanism. This type of intermittency is ob- activity N as the distance from the poilt,,, then the off
served for maps of the interval whose graphs, in some regiophases correspond to the periods when the system is in the
of their domains of definition, pass very close to the 45 degeighborhood oi;,,. For comparison of the behavior with
line without crossing it. In this case the near intersection otthat of on-off intermittency, we thus consider the sigigl
the map with the 45 deg line produces a virtual fixed point=N{(X;) =|X;— X¢an| -
analogous to the second fixed point that we mentioned for Figure 12a) shows an example of the behavior Xf
the case of on-off intermittency. The difference is that, for=|X;—X,| for the above parameter values. The variake
on-off intermittency, the second fixed point controls thespends long periods close to zero, with rapid excursions far
bursting, whereas the ghost point in the Pomeau-Mannevillom this point. Figure 1@) shows the amplitude distribu-
scenario is the producer of quiescent behavior. Both mechdion of the signalX; , as obtained from an ensemble of 100
nisms produce bursty signals but with different statisticalrealizations of the process, each composed by m@ints.
properties as we now explain. Although a power-law behavior is not present, this distribu-
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FIG. 13. Results for the nonlinearly filtered, linear autoregressivélAprocess discussed in the text, EB5). (a) Sample time series
of the state variable;, (b) amplitude distribution(c) power spectrum, andd) distribution of the duratiorTl, of the off phases. The
threshold for determining the lengtfs, of the off phases has been set to 0.001. Same details as in Fig. 8.

tion is not so different from that generated by on-off inter- phases of a measured signal, the Pomeau-Manneville inter-
mittency, and the two could probably be confused with eachmittent scenario can be easily distinguished from on-off in-
other in the analysis of experimental signals affected by meaermittency.
surement errors. Before closing this section we recall that simple unimo-
Figure 12c) shows the power spectrum of the sigixl, dal, one-dimensional maps can generate bursting behavior.
again obtained by an average over 100 realizations oPne example is the map introduced by Maynard-Sriiei
217-point-long time series. The power spectrum has an aveiin the context of population dynamics,
age power-law appearance only at high frequency, while it
becomes flat at low frequency. This behavior is quite differ- Xt
ent from what is observed for on-off intermittency. K1 = (24)
A N 1+(aXy)
The most striking difference between the intermittent be-
havior generated by the Pomeau-Manneville scenario an@herea, b, andr are control parameters taken to be positive.
on-off intermittency is found in the distribution of the dura- At small X, the map has slope At largerX, the map reaches
tions of off phases. Figure 1@ shows the distribution of the g maximum, after which it decreases toward zero. For large
durationT 4 of the periods for whichX{<0.005. The distri-  values ofb, the map is very steep in the decreasing portion
bution of T, peaks at a given maximum value, as can bebeyond the maximum and it is said to haveamercompen-
qualitatively gathered from the inspection of Fig(d2 This  sating behavior. For largeb, this map can produce
behavior is totally different from the power-law behavior, intermittent-looking signals, having a red power spectrum at
T;3’2, obtained for on-off intermittency. high frequencie$25]. These signals have statistical proper-
Analogous results are obtained for different values of thelies that are similar to those produced by the Pomeau-
parameters in maf23), or for different maps having a simi- Manneville mechanism, and they can be easily distinguished
lar behavior of quasitangency to the 45 deg line. By computfrom signals produced by on-off intermittency on the basis of
ing the power spectrum and, above all, the distribution of offthe distribution of quiescent phases.
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ance of multifractality when the data are analyzed with box-
. 1 counting method$27]. Discreteness effects, lack of statis-
tics, and nonlinear static filters acting on linearly correlated
processessuch as taking the exponential of a linear autore-
gressive procegsan lead to a decrease Mf; with increas-
ing g. In the present case, the interplay of linear correlations
and of a nonlinear static transformation leads to a multifrac-
tal behavior of the signal produced by the FLAES). To
° o 1 illustrate this behavior, we show in Fig. 14 the generalized
. scaling exponents for an on-off signal of the type discussed
] above and for a signal coming from the FLAPR5). The
scaling exponents have been normalized by dividing them
for the value of the second-order exponéty, since the two
o} : s : , : . L . signals have slightly different linear correlatiofreeasured
a by H,), while what is of interest here is the relative decrease
of the scaling exponent from its value fqe=2. The behav-
FIG. 14. Generalized scaling exponents for on-off intermittencyjq; of the two signals is similar and a clear distinction be-

(filled circles and for the nonlinearly filtered, linear autoregressivetWeen finite-length signals generated by the two processes
AR(1) process discussed in the text, EB5) (empty circle$. The cannot be drawn on this basis
scaling exponents have been normalized by dividing them for the '

value of the second-order exponeht;.
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VIII. DISCUSSION AND CONCLUSIONS

VII. ATRANSFORMATION OF VARIABLES . ) )
We have seen how on-off intermittency is produced by a

The mechanisms for bursting discussed above can all bigistic map whose control parameter fluctuates, either cha-
associated with specific phase-space dynamical featurestically or stochastically. The method of making parameters
However, bursting signals can be simply generated by takingary is an effective way of producing chaos as well as on-off
a nonlinear transformation of a linear autoregressive procesatermittency. The resultant behavior in turn depends on the
[FLAP (filtered linear autoregressive procgs3he analysis parameters controlling the variations in the original param-
that follows indicates that a FLAP can mimic the output of eter itself[3].
the on-off intermittency, insofar as scaling is concerned. What the model reveals is that in a sliver of the parameter

To be specific, we consider the proc¢26] space that controls the “variable parameter” itself, we find

on-off intermittency. This sliver is a transition layer from

Zi;1=CiZ+ oW,  Xi+1=CoexpZi11), (25  order to chaos lying just above the critical curve determined

by Heagyet al. [15]. Within this surprisingly limited region,
whereC;=0.999,C,=0.001, andr=0.5. HereW, is white  we find a number of telltale characterisitics of signals pro-
noise uniformly distributed between -1 and 1. Figuréal3 duced by on-off intermittency. It is interesting that passage
shows a sample time series for this process, Figo)lshows  through this narrow strip of parameter space is a route to
the amplitude distribution, Fig. 18) shows the power spec- chaos for the system just as for other intermittencies, notably
trum, and Fig. 1&1) shows the distribution of the duration of the Pomeau-Manneville varieties. On one side of the param-
the off phases. The distribution df, has a power-law de- eter strip of on-off intermittency, the system undergoes cha-
pendence,p(T¢)0<T;3/2, as observed for on-off intermit- otic, nonintermittent dynamics driven by external parametric
tency. noise(if we may call a nondeterministic system chapaaod,

For this process, the amplitude distribution has a poweren the other side, it is in a stable quiescent state. The route to
law dependence and the power spectrum has an approximathaos for this system is through the parametric territory of
power law dependence at high frequencies. In addition, then-off intermittency.
distribution of T, has a power-law dependencp(T ;) A further result of this study concerns the possibility of
och’Z, as observed for on-off intermittency. In fact, this distinguishing on-off intermittency from other bursting
behavior is related to the basic properties of Brownian moimechanisms. As we have shown, the statistical properties
tion: as shown by Heaggt al. [15], the distribution of the that we have considered are sufficient to distinguish on-off
off phases depends only on the linearized dynamics of théntermittency from other mechanisms for bursting, such as
process. Since a simple linear AR process passed through the Pomeau-Manneville intermittency scenario and the be-
a nonlinear static filter can generate a power-law distributiorhavior of an overcompensatory bursting map.
for the duration of off phases, this property is clearly not On the other hand, we have shown that a simple FLAP,
enough to guarantee the presence of on-off intermittency are., a linear autoregressive process passed through a nonlin
of other dynamical behaviors, such as SOC. ear static filter, generates time series that mimics many of the

Indeed, we observed that even the multifractal propertieproperties of on-off intermittent signals. In particular, such
are not sufficient to distinguish between the different pro-signals have a power-law distribution of the duration of off
cesses. For example, &correlated stochastic process with phasesP(Td,)ocT;s’z, and display apparent multifractal be-
exponential amplitude distributions can lead to the appearavior when studied with standard analysis methods. We
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