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Signature of on-off intermittency in measured signals
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On-off intermittency is a phase-space mechanism that allows dynamical systems to undergo bursting. As its
name suggests, bursting is a phenomenon in which episodes of high activity are alternated with periods of
inactivity. Here we attempt to see whether we can tell from the output of a signal when an observed bursting
behavior is caused by the presence of on-off intermittency, using the example of a forced logistic map. The
results of our study indicate that on-off intermittency can be readily distinguished from other mechanisms for
bursting we know of, except for one. Many statistical properties of finite-length signals generated by on-off
intermittency can in fact be mimicked by the output of a nonlinearly filtered, linear autoregressive random
process.

DOI: 10.1103/PhysRevE.66.066209 PACS number~s!: 05.45.2a, 07.05.Kf
th

ns
ee
em
en
uf
o
be
oi
e
t
ita

m
a
u
ia
ze
ch
m
ze
il

f a

f
g

pear
the
d
and
a-

to
ter-
ied
a-
and

-off

er
ific
ible

tis-
n-

of

in
h a

x-
the

0
ly
I. INTRODUCTION

In 1949, Batchelor and Townsend used the wordintermit-
tencyto describe their observations of the patchiness of
fluctuating velocity field in a fully turbulent fluid@1#. The
kind of intermittent behavior isolated in their observatio
occurs whenever systems alternate continually betw
bursts of activity and quiescent states. Many natural syst
display such behavior. Solar activity is an example of curr
interest@2,3# because its cyclic production of sunspots s
fers sporadic interruptions that may be associated with c
weather on earth. In the laboratory, Maurer and Libcha
@4# have produced records of temperature variation at a p
in a thermally convecting fluid that clearly exhibits the ph
nomenon. These two examples must serve to represen
many known occurrences of vacillation between high exc
tion and dormancy that are too numerous to list here.

In the past twenty years, the term intermittency has co
to be used to refer to a wider class of alternations in beh
ior, as between temporal almost periodicity to continuo
chaos. With the proliferation of models to explain such var
tions, workers in dynamical systems theory have reali
that there are many different kinds of phase-space me
nisms that produce intermittency, especially of purely te
poral behavior. For example, an early and readily visuali
mechanism of such alternation is the Pomeau-Mannev
scenario for the behavior of a system in the proximity o
saddle-node bifurcation@5#. A different mechanism, which is
the subject of the present paper, is the one calledon-off in-
termittency, see Ref.@6# for an introduction to this type o
dynamics and Ref.@7# for an early discussion of burstin
dynamical systems. More recently, several discussions
bursting mechanisms have been published@8–14#; some of
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these are variants of the on-off mechanism and some ap
to be distinct. To avoid confusion, we shall adopt here
somewhat imprecise termbursting to describe the observe
behavior that the various models are trying to capture,
retain the term on-off intermittency for the particular mech
nism that we study here.

A first question that we consider in this paper is how
determine in which regions of parameter space on-off in
mittency may occur. As we see below for the model stud
here, on-off dynamics is confined to a narrow region in p
rameter space, at the border between ordered behavior
full-blown noise-driven chaos so that passage through on
intermittency is one route to chaos.

A further question that we address is how to tell wheth
a given bursting behavior is well modeled by the spec
process of on-off intermittency, as opposed to other poss
mechanisms~such as the Pomeau-Manneville mechanism!.
In this work we thus analyze some of the observable sta
tical properties of the on-off intermittency mechanism, co
tinuing along the lines of Heagyet al. @15#. The goal of this
effort is to obtain a sufficiently refined characterization
on-off intermittency that will permit us to detect it~or rule it
out! in time-series data. As we have shown elsewhere@16#,
and we discuss further here, this is often a difficult task
time-series analysis. We shall illustrate the procedure wit
simple model whose output is easily calculated.

II. THE DRIVEN LOGISTIC MAP

In the interests of ease of computation and clarity of e
position we concentrate here on the simple example of
driven logistic map,

Xt115A~Yt!Xt@12Xt#. ~1!

The quantityA(Yt) is to be specified but we assume that
<A<4 and that it is amonotonicfunction of Yt . This sys-.
©2002 The American Physical Society09-1



e

is
ve

in

b
er
c
in
ng
th
te

t

d
re

ne

t
e

et
o

-

it-
s

ea

the

t-

of

-

nge
i-

es

oint

TONIOLO, PROVENZALE, AND SPIEGEL PHYSICAL REVIEW E66, 066209 ~2002!
tem has the invariant manifoldX50 and we shall measur
the level of activity of the system byuXtu.

In the simple case where the dynamics ofYt does not
depend onXt , we have a skew-product structure and it
then relatively easy to anticipate what kind of qualitati
behavior the model will produce. If we freezeYt the stability
of X50 is decided by the instantaneous value ofA. In the
state of frozenYt , the map may have a second fixed po
away from X50. When A drops below unity, this point
ceases to exist and the system heads back towardX50,
there to hover quiescently withuXtu close to 0 untilA rises
above unity once again. Though the detailed behavior to
expected when there is no skew-product structure is hard
anticipate, numerical studies show that on-off intermitten
occurs robustly. In either case, to produce marked burst
we need the invariant manifold to be sufficiently attracti
during sufficiently long stable phases. As we see below,
happens in only a small portion of the available parame
space that represents a transition from order to chaos.

To see the on-off mechanism in action, we specialize
the explicit case of a noise-driven logistic map, with

A~Yt!5A01aYt, ~2!

whereYt is d-correlated noise that is uniformly-distribute
in the interval@0,1# andA0 anda are parameters. To ensu
that 0<A(Yt)<4, we restrict ourselves to the caseA0>0,
a>0, andA01a<4. Figure 1 shows the parameter pla
for the noise-driven systems~1! and ~2!. The dark gray area
indicates the parameter range for which the fixed poinX
50 is stable. The pale gray area indicates the param
range for which the pointX5121/A would be attracting if
A were constant. Outside the two gray regions in param
space, the system undergoes different types of noisy cha
dynamics.

The intermittent dynamics of systems~1! and~2! has been
described in Refs.@6,15,17#. Bursting is observed in the tem
poral evolution ofXt as the stability of the fixed pointX
50 varies. Figure 2~a! shows a time series ofXt for the
parameter valuesA050 anda52.75. Heagyet al. @15# have
shown that forA050 there is a critical valueac.1, below
which the system asymptotically tends to the fixed pointX
50, without any sustained intermittent bursting. Such
critical value exists also for 0,A0,1, leading to a critical
line ac(A0).12A0 that separates a region with no interm
tency fora,ac from a region where on-off intermittency i
possible, fora.ac .

To derive the critical line~following Heagy et al.!, we
recall that the bursting behavior is determined by the lin
instability of the systems~1! and ~2!. For prescribedA(Yt),
the linear equation in proximity of the fixed pointX50 can
be written as

Xt115A~Yt!Xt1O~Xt
2!, ~3!

and thus we can write

ln
Xt11

X0
'(

r 50

t

ln A~Yr !5~ t11!^ ln A&, ~4!
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where the angular brackets indicate time average over
interval @0,t#. Then

Xt115X0exp@~ t11!^ ln A&#. ~5!

In the case^ ln A&.0, the fixed pointX50 becomes un-
stable. For̂ ln A&,0, the fixed point is stable and the burs
ing behavior, even if present, is just a transient. With Eq.~2!,
we then find that the value ofac for which

^ ln~A01acYt!&50 ~6!

is the approximate marginal stability curve for the onset
on-off intermittency.

The value of̂ ln A&5^ ln(A01aYt)& depends on the prob
ability distribution ofYt , which we denote asr(Y). For the
uniformly distributed random noise considered above, 0<Y
,1, r(Y)51, whence

^ ln~A01aYt!&5E
0

1

dYr~Y!ln~A01aY! ~7!

and so

^ ln A&5
1

a
@~A01a!ln~A01a!2A0ln A02a!]. ~8!

Thus, the critical condition,̂ ln A&50, is given by

FIG. 1. Parameter plane for the stochastically forced systems~1!
and ~2! discussed in the text. Allowed values of the parametersA0

and a must satisfyA01a<4 ~this limit is indicated by the solid
curve at245°). The dark gray area indicates the parameter ra
for which the fixed pointX50 is stable. The pale gray area ind
cates the parameter range for which the pointX5121/A would be
attracting ifA were constant. The curve on the lower left indicat
the minimum parameter values, Eq.~9!, for which on-off intermit-
tency is present; below this curve the system tends to the fixed p
X50.
9-2
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FIG. 2. Sample time series of the driven variableXt in the stochastically forced systems~1! and ~2! for the parameter values~a! A0

50, a52.75; ~b! A050.5, a52.75.
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~A01ac!ln~A01ac!2A0ln A02ac50. ~9!

This implicitly definesa5ac(A0), shown as a curve in Fig
1. However,a.ac is only a necessary condition for on-o
intermittency. As we show below, on-off intermittency exis
only in a limited region of parameter space just above t
curve. For example, Fig. 2~b! shows a time series ofXt for
the parameter valuesA050.5 anda52.75, above the critica
line. This time series does not display on-off intermitten
as we shall see, and the system undergoes noisy chaoti
namics. In the following, we use the two signals shown
Fig. 2 to contrast intermittent dynamics with noisy chaot
nonintermittent behavior. This will allow for better chara
terizing the properties of this mechanism for bursting and
determining the region of parameter space where on-off
termittency can be found.

III. A POWER-LAW TALE

In this section we consider the two examples of the s
tems ~1! and ~2! corresponding, respectively, to behavio
that are intermittent, as shown in Fig. 2~a!, or noisy chaotic,
as in Fig. 2~b!. Our goal is to isolate the properties of on-o
intermittency and to learn to detect on-off intermittency
measured time series by using the simple example of
noise-driven logistic map. As we show in the following, o
off intermittency is closely associated with power-law stat
tics.

A. Signal amplitudes

Figure 3~a! shows the amplitude probability density fun
tion, Ã(X), for the intermittent and nonintermittent cas
discussed above, corresponding, respectively, to the pa
eter values (A050,a52.75) and (A050.5,a52.75). The
distributions have each been computed from an ensemb
100 realizations of the process. For every realization we u
a different seed for the random number generator~to obtain a
different sequence of random numbers in the stocha
driver!, and we produced a time series of 2175131 072
06620
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points. The intermittent system always resulted in a pow
law distribution of the signal amplitude.

Close to the critical curve above which on-off interm
tency appears, the signal amplitude has a distributionÃ(X)
}X21 for X less than about 0.1. For larger values ofX, the
distribution deviates from a power law. The behavior of t
amplitude distribution at smallX can be understood by con
sidering the linearized dynamics of systems~1! and ~2!, al-
ready discussed for the derivation of the critical curve
on-off intermittency. For small values ofXt andA050, we
can write

Xt11'aYtXt5aX0)
s

Ys . ~10!

Thus, from the relationship

Ã~X!dX}PS)
s

YsDd)
s

Ys ~11!

FIG. 3. Amplitude distribution for the on-off intermittent dy
namics corresponding toA050, a52.75 ~solid line! and for the
nonintermittent dynamics corresponding toA050.5, a52.75
~dashed line!. The distributions have been obtained by an avera
over 100 realizations of the process. Each realization has a leng
217 points.
9-3
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TONIOLO, PROVENZALE, AND SPIEGEL PHYSICAL REVIEW E66, 066209 ~2002!
and Eq. ~10! we obtain that Ã(X)}P()sYs), where
P()sYs) is the distribution of)sYs . Then we may introduce
a new probability densityP̃ and write

PS)
s

YsDd)
s

Ys} P̃S (
s

ln YsDd(
s

ln Ys . ~12!

Hence

Ã~X!} P̃S (
s

ln YsD d ln )
s

Ys

d)
s

Ys

} P̃S (
s

ln YsDX21,

~13!

where the factorP̃((sln Ys) introduces only lognormal cor
rections. This simple, but general, argument rationalizes
numerical findings.

Owing to the power-law distribution, for on-off intermit
tent signals the kurtosis

kX5
^~Xt2^X&!4&

^~Xt2^X&!2&2
~14!

of the amplitude distribution is significantly larger than t
Gaussian valuekg53. For nonintermittent, randomly drive
chaotic states, on the other hand, we find values of the
tosis that are close to 3.

B. On and off phases

A measure of intermittency that is used in the study
turbulence is the fraction of time the system is in the act
state, or intermittency factor. The term duty cycle also
pears in such contexts. However, in their study of on-
intermittency in the systems~1! and ~2!, Heagyet al. pre-
ferred to measure the time spent in the quiescent, or
state. They found that the probability of having an off,
laminar, phase lasting a timeTf is proportional toTf

23/2. In
measuring the durations of on and off phases, we nee
specify an amplitude of activity,XC , above which the sys
tem is considered to be on. For the choiceXC50.001, Fig. 4
shows the distribution of off, or laminar, phases for the
termittent case, as obtained from a time series with len
T523107. Bursting behavior is associated with a powe
law distribution of durations of the off phases, for a lar
range of thresholds. By contrast, the stochastically driv
nonintermittent chaotic dynamics produces completely
ferent signals. Clearly, there are no discernible off phases
the nonintermittent chaotic state, as the system never rem
long in or near to the invariant manifold in which it is con
sidered to be in the off state. One could, however, define
state of being off as characterized byuXt2^X&u,C, whereC
is a suitably defined constant and^X& is the time average o
Xt , or similarly by uXt2(12A21)u,C for A.1. In both
cases, no scaling emerges and the durations of the off ph
defined in this way have a distribution that falls off rapid
An example is provided in Fig. 4, where we show the dis
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bution of the durationTf of the phases for whichuXt
2^X&u,0.001, for the nonintermittent case corresponding
A050.5 anda52.75. This distribution drops off much mor
rapidly thanTf

23/2.
The properties of the distribution of the off phases do n

depend on the global properties of the specific system c
sidered, but are generated by the dynamics in proximity
the invariant manifold. For the systems~1! and ~2!, the dy-
namics can be linearized near the fixed point to obtain

logXt115 ln~A01aYt!1 ln@Xt~12Xt!#

' ln~A01aYt!1 ln Xt . ~15!

Thus the dynamics of the system close to the invariant m
fold is locally a random walk in logarithmic coordinates, an
this dynamics is captured by the distribution of the o
phases. For this reason, a power-law distribution of quiesc
phases,P(Tf)}Tf

23/2, is not a sufficient condition to declar
the occurence of on-off intermittency. This point is explor
further in Sec. VII.

C. Power spectra

Another interesting issue concerns the shape of the po
spectrum. Simple nonintermittent, chaotic systems, such
the logistic map with constantA, generate signals with powe
spectra that are either white or blue@18# ~that is, dominated
by the high-frequency components!. By contrast, signals
generated by on-off intermittency have red spectra with l
frequencies predominating@17#. In that way, on-off intermit-
tent systems act as nonlinear integrators that take white d
ing signals and transform them into red signals character
by low-frequency variability and spectral energy growin
with the wavelength. Additionally, the power spectra of o
off intermittent time series often display approximate pow
law behavior with spectral energy densityP(v) proportional

FIG. 4. Distribution of the durationTf of the off phases for the
intermittent case, corresponding to (A050,a52.75) ~solid line!,
and for the nonintermittent case, corresponding toA050.5, a
52.75~dashed line on the left!. The upper dot-dashed line indicate
a power-law behaviorTf

23/2. The distributions have been obtaine
from realizations of length 23107 points.
9-4
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SIGNATURE OF ON-OFF INTERMITTENCY IN . . . PHYSICAL REVIEW E66, 066209 ~2002!
to a power of the inverse of the angular frequencyv:
P(v)}1/vg with g usually smaller than 1. In Fig. 5 w
contrast the power spectra for the systems~1! and ~2! in a
situation of on-off intermittency with that in a state of no
intermittent, noisy chaotic dynamics. The spectra have b
computed for the same parameter values already consid
above, and averaged over 100 realizations, each of whic
composed of 217 points. The two spectra are completely d
ferent, with the spectrum for nonintermittent dynami
showing a white noise behavior.

Though power-law spectra and power-law amplitude d
tributions have often been taken as indicators of s
organized criticality~SOC, Ref.@19#!, as we see from this
example, power-law statistics are also associated with on
intermittency. Hence, the detection of power laws from m
sured signals does not warrant the conclusion that SO

FIG. 5. Power spectra for the on-off intermittent dynamics c
responding toA050, a52.75 ~solid line! and for the nonintermit-
tent dynamics corresponding toA050.5, a52.75 ~dashed line!.
The power spectra have each been obtained by averaging ove
realizations of the process, each having a length of 217 points.
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operating, as there are other mechanisms~including on-off
intermittency! that produce such statistics.

D. Multifractal properties

In the analysis of signals, it is useful to introduce t
generalized structure functions

Sq~t![~^uXt1t2Xtuq&!1/q, ~16!

where the symbol̂ •••& again indicates average over tim
andt is an integer delay time. When

Sq~t!}tHq ~17!

for smallt, the signal is said to have scaling andHq is called
a scaling exponent@20#.

The standard structure function of a signal isS2. Monof-
ractal, or self-affine, signals are characterized by the equa
Hq5H2 for all q. Brownian motion and white noise are ex
amples of monofractal signals, havingH250.5 andH250,
respectively. Multifractal, or multiaffine, signals are chara
terized byanomalous scalingin which Hq.Hp for some
positive numbersq,p @21#. Multifractal signals are gener
ated by nonlinear~deterministic or stochastic! processes, and
their Fourier transforms have correlated phases@22#.

Figure 6~a! shows the set of generalized structure fun
tions for the on-off time series shown in Fig. 2~a!. An ap-
proximate power-law behavior appears for the different m
ments, allowing for the determination of the generaliz
scaling exponentsHq . Figure 6~b! shows the generalized
scaling exponentsHq versusq, as obtained by averagin
over 100 realizations of the processs~1! and ~2!, by using
different random seeds for the stochastic driver. The logar
mic slopes of the structure functions have been compute
the range 9<t<90. The upper and lower curves indicat
respectively, the maximum and minimum values of the sc
ing exponent on the ensemble of realizations. The sca
exponents decrease monotonically with the orderq of the

-

00
o
nge 9
es indicate,
le of 100
FIG. 6. ~a! Generalized structure functions for moments of orderq50.5,1,1.5, . . . ,8 for theon-off intermittent system corresponding t
A050, a52.75, in ascending order.~b! Average scaling exponents, as computed by a power-law fit to structure functions in the ra
<t<90. These scaling exponents are computed as an average over an ensemble of 100 realizations. The upper and lower curv
respectively, the maximum and minimum values of the scaling exponent for each moment order, as obtained from the ensemb
realizations.
9-5
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TONIOLO, PROVENZALE, AND SPIEGEL PHYSICAL REVIEW E66, 066209 ~2002!
moment. Analogous results are found for other param
values that lead to on-off intermittency. Thus, Fig. 6 ind
cates that signals generated by on-off intermittency disp
anomalous scaling. By contrast, nonintermittent chaotic
namics does not lead to structure functions with scal
properties@23#.

IV. A REGIME DIAGRAM

To form a comprehensive picture of the complex of ch
acteristics of a signal generated by on-off intermittency,
construct a regime diagram for the driven logistic map sho
ing the region of parameter space where on-off intermitte
occurs in that model. To produce the diagram, we have c
puted several global statistics for the part of parameter p
where intermittency is theoretically possible. In particul
we have considered the following statistics:

~1! The logarithmic slope of the power spectrum. This
negative for on-off intermittency, while it is null or positiv
for noisy chaotic, nonintermittent dynamics.

~2! The kurtosis of the time series. This is definitely larg
than 3 for intermittent systems and it is'3 for nonintermit-
tent dynamics.

~3! The logarithmic slope of the distribution of off phase
All these statistical estimators provide consistent answ

about where the on-off intermittency is found so, in the
terests of brevity, we discuss only the results of the kurto
analysis.

Figure 7 shows the values of the kurtosis in the param
plane (A0 ,a). The kurtosis is significantly larger than 3 on
in a thin slice just above the theoretical curve~6! discussed
by Heagyet al. The lower edge of the region of on-off in
termittency coincides with this curve, while the upper edge
fuzzier and a well-defined border cannot be identified he
Intermittency is strongest immediately above the critical l
and it merges smoothly with the nonintermittent noisy cha
found for larger values of the parameters. Consistently,
value of the kurtosis is largest at the critical line and it d

FIG. 7. The distribution of values of the kurtosis in the para
eter plane. In the light portion, the values are significantly grea
than 3, indicating the parameter values in which we may expec
find on-off intermittency.
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creases for increasing values ofA0 and/ora. For givenA0,
the range of values ofa for which on-off intermittency is
present is quite limited.

V. VARIATIONS ON THE THEME

A. Deterministic drivers

Having seen how a deterministic system parametrica
driven by a stochastic process produces on-off intermitten
we may ask what happens when the driving process is de
ministic. The deterministic case has already been consid
in earlier studies@6,15–17# and we here recall the case o
two coupled logistic maps with skew-product structu
namely,

Xt115A~Yt!Xt~12Xt!, ~18!

Yt115BYt~12Yt!, ~19!

A~Yt!5A01aYt , ~20!

whereB is constant.
In Eqs. ~18!–~20!, the probability distribution function

r(Y) of the chaotic driving signalYt entering the integral in
Eq. ~7! is different from that of the noise-driven system co
sidered previously. The lower threshold for on-off interm
tency is correspondingly different. The lower limit to on-o
intermittency for the chaotic driving reaches the valueac
54 for A050. Thus, in order to generate intermittency wi
this form of chaotic driving we need to haveA0Þ0.

Figure 8 shows a sample time series@panel~a!#, together
with the amplitude distribution@panel~b!#, the power spec-
trum @panel~c!# and the distribution of the off phases~panel
d! for A050.01, a53.99, andB54. For these paramete
values, the system behaves very similarly to what happ
with a stochastic driver, indicating that on-off intermittenc
does not require the presence of stochastic forcing. As
cussed by von Hardenberget al. @16#, distinguishing between
deterministic and stochastic drivers in the analysis of a ti
series requires either access to the extremely small sc
achieved during the off periods or the explicit recognition
the phase-space structures present at large amplitudes, w
are induced by the deterministic driver.

The above result was found forB54. For smaller values
of B, the situation changes slightly. WhenB,4, the driving
variableYt is confined to a subset of the interval (0,1) th
becomes smaller as the value ofB decreases. Figure 9 show
the probability distribution of the driver,Yt , for the values
B53.9 andB53.75. Shrinking in the width of the distribu
tion r(Y) is evident. For values ofB smaller than the thresh
old for chaos in the logistic map,Bc'1.4, the variableYt is
periodic or tends to a fixed point.

On account of the different distribution of the drive
r(Y), for Bc,B,4 the critical curve for the appearance
on-off intermittency moves to lower values ofa. Figure 10
shows the critical curve for the casesB54, B53.9, andB
53.75. As expected, on-off intermittency is present only in

-
r

to
9-6
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FIG. 8. Results for a chaotically forced logistic map, Eqs.~18!–~20!, for the parameter valuesA050.01,a53.99, andB54. ~a! Sample
time series of the driven variableXt , ~b! amplitude distribution,~c! power spectrum, and~d! distribution of the durationTf of theoff phases.
The amplitude distribution and the power spectrum have been obtained by an average over 100 realizations of the process. Every
has a duration of 217 points. The distribution of the off phases has been obtained from one realization with duration 23107 points. The
dashed line in panel~d! indicates a power-law behaviorTf

23/2.
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thin region of the parameter plane just above the criti
curve.

B. The effect of feedback

In the study of dynamical systems, there is often a disti
tion made between driven and autonomous systems. Yet
06620
l

-
is

not so hard to see either one in terms of the other. When
makes a surface of section it is really a stroboscopic ma
which the variation of one coordinate is used as the clock
may not be a good clock by some lights, but it makes
good maps. Similarly, on-off intermittency may be eith
driven or autonomous, the difference being that in the form
FIG. 9. Probability distribution of the chaotic driverYt , Eq. ~19! in the text, for the valuesB53.9 @panel~a!# andB53.75 @panel~b!#.
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TONIOLO, PROVENZALE, AND SPIEGEL PHYSICAL REVIEW E66, 066209 ~2002!
case we have the so-called skew-product structure that, a
have suggested, is useful for constructing models. Howe
the earliest models of the process did not have this feat
which, in fact, is not essential for the functioning of th
mechanism@7#.

FIG. 10. Critical curve for the onset of on-off intermittency wi
a chaotic driver, Eq.~19! in the text, for the casesB54, B53.9,
andB53.75.
06620
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e,

A simple example of autonomous on-off intermittenc
that has been given before@6,7#, is the model system

Xt115~A01aYt!Xt~12Xt!, ~21!

Yt115~B01bXt!Yt~12Yt!, ~22!

whereb measures the intensity of the feedback. In Fig.
we show a time series, together with the amplitude distri
tion, power spectrum and distribution of the off phases
A050, a52.05,B053.9, andb50.1. With this weak feed-
back, the system displays on-off intermittency. With a larg
feedback~i.e., for a larger value of the ratiob/B0), the sys-
tem ceases to be intermittent and apparently undergoes
intermittent chaotic dynamics. Here again, we see that~a!
on-off intermittency is a robust feature that does not dep
on the details of the driving mechanisms and~b! it is a type
of behavior that is observed only in a limited parame
range located between regular behavior and full-blown c
otic dynamics.

Finally, we note that the mechanisms for bursting whi
are substantially similar to on-off intermittency, such
‘‘bubbling’’ @11#, lead to completely analogous results.
FIG. 11. Results for a chaotically forced logistic map with feedback, Eqs.~21! and ~22!, for the parameter valuesA050, a52.05,
B053.9, andb50.1. ~a! Sample time series of the driven variableXt , ~b! amplitude distribution,~c! power spectrum, and~d! distribution
of the durationTf of the off phases. Same details as in Fig. 8.
9-8
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FIG. 12. Results for a system undergoing Pomeau-Manneville intermittency, Eq.~23!, for the parameter valuesa5242.39,b584.27,
c5254.3, andd512.43.~a! Sample time series of the state variableXt , ~b! amplitude distribution,~c! power spectrum, and~d! distribution
of the durationTf of the off phases. Same details as in Fig. 8.
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VI. OTHER FORMS OF INTERMITTENCY

Bursting signals can be generated by a diversity
mechanisms. In the previous sections, we have identi
some of the signatures of on-off intermittency and its va
ants, in order to be able to detect them in the analysis
measured time series. Here, we consider some of the o
standard processes that produce bursting, and we show
they can be easily distinguished from on-off intermittency
the basis of the statistical properties of the signals that t
generate.

A process that generates bursting signals is the Pom
Manneville mechanism. This type of intermittency is o
served for maps of the interval whose graphs, in some reg
of their domains of definition, pass very close to the 45 d
line without crossing it. In this case the near intersection
the map with the 45 deg line produces a virtual fixed po
analogous to the second fixed point that we mentioned
the case of on-off intermittency. The difference is that,
on-off intermittency, the second fixed point controls t
bursting, whereas the ghost point in the Pomeau-Manne
scenario is the producer of quiescent behavior. Both mec
nisms produce bursty signals but with different statisti
properties as we now explain.
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As an example of Pomeau-Manneville intermittency, w
consider the map given by

Xt115 f ~Xt!5aXt
41bXt

31cXt
21dXt , ~23!

defined in 0<Xt,1. In the following illustration, we usea
5242.39, b584.27, c5254.3, andd512.43. The values
of the parameters are chosen so as to have a point of
tangency—we are tempted to call it a point of pretangency
this point is atXtan50.5528 its image isf (Xtan)50.5529,
while the difference between the point and its image
u f (Xtan)2Xtanu51024. For this model, if we may measur
activity N as the distance from the pointXtan , then the off
phases correspond to the periods when the system is in
neighborhood ofXtan . For comparison of the behavior wit
that of on-off intermittency, we thus consider the signalXt8
[N(Xt)5uXt2Xtanu.

Figure 12~a! shows an example of the behavior ofXt8
5uXt2Xtanu for the above parameter values. The variableXt8
spends long periods close to zero, with rapid excursions
from this point. Figure 12~b! shows the amplitude distribu
tion of the signalXt8 , as obtained from an ensemble of 10
realizations of the process, each composed by 217 points.
Although a power-law behavior is not present, this distrib
9-9
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FIG. 13. Results for the nonlinearly filtered, linear autoregressive AR~1! process discussed in the text, Eq.~25!. ~a! Sample time series
of the state variableXt , ~b! amplitude distribution,~c! power spectrum, and~d! distribution of the durationTf of the off phases. The
threshold for determining the lengthsTf of the off phases has been set to 0.001. Same details as in Fig. 8.
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tion is not so different from that generated by on-off inte
mittency, and the two could probably be confused with ea
other in the analysis of experimental signals affected by m
surement errors.

Figure 12~c! shows the power spectrum of the signalXt8 ,
again obtained by an average over 100 realizations
217-point-long time series. The power spectrum has an a
age power-law appearance only at high frequency, whil
becomes flat at low frequency. This behavior is quite diff
ent from what is observed for on-off intermittency.

The most striking difference between the intermittent b
havior generated by the Pomeau-Manneville scenario
on-off intermittency is found in the distribution of the dur
tions of off phases. Figure 12~d! shows the distribution of the
durationTf of the periods for whichXt8,0.005. The distri-
bution of Tf peaks at a given maximum value, as can
qualitatively gathered from the inspection of Fig. 12~a!. This
behavior is totally different from the power-law behavio
Tf

23/2, obtained for on-off intermittency.
Analogous results are obtained for different values of

parameters in map~23!, or for different maps having a simi
lar behavior of quasitangency to the 45 deg line. By comp
ing the power spectrum and, above all, the distribution of
06620
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phases of a measured signal, the Pomeau-Manneville in
mittent scenario can be easily distinguished from on-off
termittency.

Before closing this section we recall that simple unim
dal, one-dimensional maps can generate bursting beha
One example is the map introduced by Maynard-Smith@24#
in the context of population dynamics,

Xt115
rXt

11~aXt!
b

, ~24!

wherea, b, andr are control parameters taken to be positiv
At small X, the map has sloper. At largerX, the map reaches
a maximum, after which it decreases toward zero. For la
values ofb, the map is very steep in the decreasing port
beyond the maximum and it is said to have anovercompen-
sating behavior. For largeb, this map can produce
intermittent-looking signals, having a red power spectrum
high frequencies@25#. These signals have statistical prope
ties that are similar to those produced by the Pome
Manneville mechanism, and they can be easily distinguis
from signals produced by on-off intermittency on the basis
the distribution of quiescent phases.
9-10
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SIGNATURE OF ON-OFF INTERMITTENCY IN . . . PHYSICAL REVIEW E66, 066209 ~2002!
VII. A TRANSFORMATION OF VARIABLES

The mechanisms for bursting discussed above can a
associated with specific phase-space dynamical featu
However, bursting signals can be simply generated by tak
a nonlinear transformation of a linear autoregressive proc
@FLAP ~filtered linear autoregressive process!#. The analysis
that follows indicates that a FLAP can mimic the output
the on-off intermittency, insofar as scaling is concerned.

To be specific, we consider the process@26#

Zt115C1Zt1sWt , Xt115C2exp~Zt11!, ~25!

whereC150.999,C250.001, ands50.5. HereWt is white
noise uniformly distributed between -1 and 1. Figure 13~a!
shows a sample time series for this process, Fig. 13~b! shows
the amplitude distribution, Fig. 13~c! shows the power spec
trum, and Fig. 13~d! shows the distribution of the duration o
the off phases. The distribution ofTf has a power-law de
pendence,p(Tf)}Tf

23/2, as observed for on-off intermit
tency.

For this process, the amplitude distribution has a pow
law dependence and the power spectrum has an approxi
power law dependence at high frequencies. In addition,
distribution of Tf has a power-law dependence,p(Tf)
}Tf

23/2, as observed for on-off intermittency. In fact, th
behavior is related to the basic properties of Brownian m
tion: as shown by Heagyet al. @15#, the distribution of the
off phases depends only on the linearized dynamics of
process. Since a simple linear AR~1! process passed throug
a nonlinear static filter can generate a power-law distribut
for the duration of off phases, this property is clearly n
enough to guarantee the presence of on-off intermittenc
of other dynamical behaviors, such as SOC.

Indeed, we observed that even the multifractal proper
are not sufficient to distinguish between the different p
cesses. For example, ad-correlated stochastic process wi
exponential amplitude distributions can lead to the appe

FIG. 14. Generalized scaling exponents for on-off intermitten
~filled circles! and for the nonlinearly filtered, linear autoregressi
AR~1! process discussed in the text, Eq.~25! ~empty circles!. The
scaling exponents have been normalized by dividing them for
value of the second-order exponent,H2.
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ance of multifractality when the data are analyzed with bo
counting methods@27#. Discreteness effects, lack of stati
tics, and nonlinear static filters acting on linearly correlat
processes~such as taking the exponential of a linear auto
gressive process! can lead to a decrease ofHq with increas-
ing q. In the present case, the interplay of linear correlatio
and of a nonlinear static transformation leads to a multifr
tal behavior of the signal produced by the FLAP~25!. To
illustrate this behavior, we show in Fig. 14 the generaliz
scaling exponents for an on-off signal of the type discus
above and for a signal coming from the FLAP~25!. The
scaling exponents have been normalized by dividing th
for the value of the second-order exponent,H2, since the two
signals have slightly different linear correlations~measured
by H2), while what is of interest here is the relative decrea
of the scaling exponent from its value forq52. The behav-
ior of the two signals is similar and a clear distinction b
tween finite-length signals generated by the two proces
cannot be drawn on this basis.

VIII. DISCUSSION AND CONCLUSIONS

We have seen how on-off intermittency is produced b
logistic map whose control parameter fluctuates, either c
otically or stochastically. The method of making paramet
vary is an effective way of producing chaos as well as on-
intermittency. The resultant behavior in turn depends on
parameters controlling the variations in the original para
eter itself@3#.

What the model reveals is that in a sliver of the parame
space that controls the ‘‘variable parameter’’ itself, we fi
on-off intermittency. This sliver is a transition layer from
order to chaos lying just above the critical curve determin
by Heagyet al. @15#. Within this surprisingly limited region,
we find a number of telltale characterisitics of signals p
duced by on-off intermittency. It is interesting that passa
through this narrow strip of parameter space is a route
chaos for the system just as for other intermittencies, nota
the Pomeau-Manneville varieties. On one side of the par
eter strip of on-off intermittency, the system undergoes c
otic, nonintermittent dynamics driven by external parame
noise~if we may call a nondeterministic system chaotic! and,
on the other side, it is in a stable quiescent state. The rou
chaos for this system is through the parametric territory
on-off intermittency.

A further result of this study concerns the possibility
distinguishing on-off intermittency from other burstin
mechanisms. As we have shown, the statistical proper
that we have considered are sufficient to distinguish on
intermittency from other mechanisms for bursting, such
the Pomeau-Manneville intermittency scenario and the
havior of an overcompensatory bursting map.

On the other hand, we have shown that a simple FL
i.e., a linear autoregressive process passed through a no
ear static filter, generates time series that mimics many of
properties of on-off intermittent signals. In particular, su
signals have a power-law distribution of the duration of o
phases,P(Tf)}Tf

23/2, and display apparent multifractal be
havior when studied with standard analysis methods.
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have so far been unable to find any statistical criteria
making a clear distinction between signals generated by
off intermittency and signals generated by nonlinear filter
of autoregressive processes, although we cannot exclud
possibility that such a statistical criterion could exist.
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